

 Navigation

 	
 index

 	Obviel 0.10 documentation

Obviel: Object/View/Element for JavaScript

Obviel is a model/view abstraction for JavaScript that helps you
improve the structure of your jQuery-based JavaScript applications.

What is Obviel all about?

JSON-centric

Obviel builds on JSON. Without insanely nested callback functions
everywhere!

Versatile but unobtrustive

Obviel is powerful. Obviel is also small. If you already know jQuery,
you just have to learn about Obviel’s render method and you will
be almost there already!

Supports true REST development patterns

We don’t just say that REST is cool and go through the motions. An
Obviel-based app can start with a single URL and find out about the
rest of your application’s URLs by following hyperlinks in JSON. And
that’s RESTful.

Loose coupling between client code and server code

Because of REST, your server and client code become loosely
coupled. Imagine changing your server code and having your client UI
adjust itself without changing a line on the client? With a
well-designed Obviel app, this is often possible!

Client-side templating

If you’re going to build a rich client-side application, why not use a
client-side templating engine? Obviel supports JSON Template out of the
box and allows you to integrate others.

Form library

Besides Obviel core, we also include a powerful client-side form
library based on Obviel core. Describe your form using JSON
structures. Get your form data as JSON. Use composite and repeating
fields with ease!

Download Obviel

Download [http://bitbucket.org/obviel/obviel/downloads] Obviel here!

Learning more

Obviel has extensive documentation.

Look at a quick overview of Obviel features

Read the Obviel core manual.

Read about Obviel forms.

We also have API documentation.

Confused? Maybe demo code will help!

We offer some integration with external systems.

Questions? Comments? Join the Obviel community!

Want to hack on Obviel? Here are some useful notes on
development.

Review the table of contents.

 Copyright 2011, Obviel Developers.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	0.-0

 	1.0b2

 	1.0b

 	0.11.2

 	0.11

 	0.10

 	0.9.1

 	0.9

 Index

 Navigation

 	
 index

 	Obviel 0.10 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | M
 | N
 | P
 | R
 | S
 | T
 | V
 | W

A

 	

 	AutocompleteWidget() (class)

B

 	

 	BooleanWidget() (class)

C

 	

 	choices (None attribute)

 	ChoiceWidget() (class)

 	cleanup (None attribute)

 	

 	constrainInput (None attribute)

 	controls (None attribute)

D

 	

 	data (None attribute), [1]

 	dateFormat (None attribute)

 	DatePickerWidget() (class)

 	DecimalWidget() (class)

 	

 	description (None attribute)

 	disabled (None attribute), [1]

 	DisplayWidget() (class)

E

 	

 	element.parent_view() (element method)

 	element.render() (element method)

 	element.rerender() (element method)

 	element.unview() (element method)

 	element.view() (element method)

 	

 	empty_option (None attribute)

 	ephemeral (None attribute)

 	errors (None attribute)

 	events (None attribute)

 	extendsIface() (built-in function)

F

 	

 	FloatWidget() (class)

G

 	

 	global_errors (None attribute)

H

 	

 	height (None attribute)

 	HiddenWidget() (class)

 	

 	html (None attribute)

 	html_url (None attribute)

I

 	

 	iface (None attribute)

 	iface() (built-in function)

 	ifaces() (built-in function)

 	

 	InputWidget() (class)

 	IntegerWidget() (class)

J

 	

 	jsont (None attribute)

 	

 	jsont_url (None attribute)

M

 	

 	max_length (None attribute)

N

 	

 	name (None attribute), [1]

P

 	

 	provides() (built-in function)

R

 	

 	render (None attribute)

S

 	

 	showOn (None attribute)

 	

 	subviews (None attribute)

T

 	

 	TextLineWidget() (class)

 	TextWidget() (class)

 	

 	title (None attribute)

V

 	

 	validate (None attribute)

 	validate.allow_negative (validate attribute), [1], [2]

 	validate.defaultvalue (validate attribute)

 	validate.length (validate attribute)

 	validate.max_after_sep (validate attribute)

 	validate.max_before_sep (validate attribute)

 	validate.max_length (validate attribute)

 	validate.min_after_sep (validate attribute)

 	validate.min_before_sep (validate attribute)

 	

 	validate.min_length (validate attribute)

 	validate.regs (validate attribute)

 	validate.required (validate attribute)

 	validate.separator (validate attribute), [1]

 	validation_url (None attribute)

 	view() (built-in function)

 	

 	(class)

 	View() (class)

 	viewform() (class)

W

 	

 	Widget() (class)

 	widgets (None attribute)

 	

 	width (None attribute), [1], [2]

 Copyright 2011, Obviel Developers.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	0.-0

 	1.0b2

 	1.0b

 	0.11.2

 	0.11

 	0.10

 	0.9.1

 	0.9

 _static/manualtest/button.html

_static/dependencies/datatables/images/back_disabled.jpg

_static/dependencies/smoothness/images/ui-bg_highlight-soft_75_cccccc_1x100.png

_static/manualtest/global.html

_static/manualtest/deferred.html

_static/minus.png

_static/test/images/ui-bg_diagonals-thick_18_b81900_40x40.png

i18n.html

 Navigation

 		
 index

 		Obviel 0.10 documentation »

Internationalizing Obviel

To extract the translation strings from JavaScript files, you need to
use the xgettext tool. Unfortunately this tool still does not have
native support for JavaScript. The C extractor comes pretty close,
but JavaScript code needs some preprocessing (into fake C code) before
it’s safe to use this.

If you have run buildout, the preprocessor is installed as part of a
package called JsLex [http://pypi.python.org/pypi/jslex], in bin/jslex_prepare. First run this against
all JavaScript files that need preparation for xgettext, like this:

bin/jslex_prepare src/obviel/obviel-forms.js

This will create a new file in src/obviel named
obviel-forms.jslex. This file is only needed during xgettext
extraction, so can be thrown away again.

Once we have this file, we need to use xgettext to extract its translation
strings into a .pot file:

xgettext -L C -d obviel-forms --keyword=_ obviel-forms.jslex -o obviel-forms.pot

What are the command line arguments for?

		-L C puts xgettext in C language mode. This is safe as we
preprocessed our JavaScript into something which the C language of
xgettext can deal with.

		-d obviel-forms tells xgettext that the translation domain is
obviel-forms.

		--keyword=_ tells xgettext to see _("this is a string") as
translatable texts to extract.

		obviel-forms.jslex is the preprocessed .jslex file made from
obviel-forms.js. You can list more than on .jslex file here.

		-o obviel-forms.pot indicates the .pot file to generate

Once there is a .pot file, you can turn it into a specific file that
contains the translations for a language, in this example, Dutch:

msginit -l nl_NL -i obviel-forms.pot -o obviel-forms-nl.po

Now use the installed pojson script to transform the .po file into
a obviel-forms-nl.js file:

bin/pojson convert -j obviel-forms src/obviel/obviel-forms-nl.po > src/obviel/obviel-forms-nl.js

The obviel-forms-nl.js file contains the translated messages in a
form consumable by JsGetText. This file needs to be included before
obviel-forms.js to make the translations take effect.

The magic command to create the *.pot file from .jslex files:

xgettext -L C -d obviel-forms --keyword=_ src/obviel/obviel-forms.jslex src/obviel/obviel-forms-datepicker.jslex src/obviel/obviel-forms-autocomplete.jslex -o src/obviel/obviel-forms.pot

It would be nice to automate the whole procedure (perhaps using
Fanstatic?). It would also be nice if more than one language could be
loaded into the client at once.

 © Copyright 2011, Obviel Developers.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 		latest

 		0.-0

 		1.0b2

 		1.0b

 		0.11.2

 		0.11

 		0.10

 		0.9.1

 		0.9

api.html

 Navigation

 		
 index

 		Obviel 0.10 documentation »

Obviel API

Obviel core

		
iface(name[, *bases])

		Declare an iface.

		Arguments:		
		name (string) – A unique string identifying the iface.

		*bases – Optional extra iface strings that are interpreted
as base ifaces that this iface extends.

Register an iface with the name name. Note that declaring
an iface is not required in order to use it; you can just refer
to any iface, declared or not, by name.

A registered iface always automatically extends a special iface
base.

		
provides(obj, base)

		Check whether an object provides an iface.

		Arguments:		
		obj – Any JavaScript object.

		base (string) – A string identifying an iface.

		Returns:		true if obj provides iface base (or an
iface that extends base.

		
extendsIface(name, base)

		Register a new base iface for an iface.

		Arguments:		
		name (string) – Identifies the iface to extend.

		base (string) – Identifies the base iface that this iface extends.

		
ifaces(obj)

		Obtain all ifaces that this object provides, going recursively
through base interfaces, breadth first.

If no ifaces attribute is available, the JS type of the object
is returned instead.

		Arguments:		
		obj – Any JavaScript object

		Returns:		a list of ifaces that the obj provides.

		
class View(settings)

		

		Arguments:		
		settings – an object of which the properties will become
properties of the view itself.

You can create a View by instantiating one and then registering it
with view(), but that function also allows creation of a new
view directly from a settings object.

If you want to create your own view types that provide more features
particular to specific use cases, you should derive your view from
the View class. One example of this is Widget() from the
Obviel forms library.

		
view(view)

		Register a view with Obviel. This allows Obviel to look up the view
for the iface with which the view was registered.

		Arguments:		
		view – a view object to register with Obviel. As a
convenience, you can also provide a bare JavaScript object, which
will be converted to a View() object with the object’s
properties.

		
element.render(obj[, name, callback, errback])

		Render a view for an object on a jQuery element. This instantiates a
view by cloning it from the registered view and then calls its
View.render() method.

		Arguments:		
		obj – The JavaScript object to render. Alternatively this
can be a string, which will then be interpreted as a URL. The
URL will be fetched and the resulting JSON object will be
the object to render.

		name – The name of the view to render for the object. If
not supplied the name default will be used.

		callback – A callback function to call when the rendering
has been completed. this will be the view instance
that was used for the rendering.

		errback – currently not supported.

All methods of the View() object will have access to the
following properties on this during rendering:

		el: the jQuery element that the view is being rendered on.

		obj: the object being rendered.

		callback: the callback function, if supplied.

		errback: the errback function, if supplied.

		
		registry: the Registry() in which the view was

		looked up.

		
element.rerender([callback, errback])

		

		
element.view()

		

		
element.parent_view()

		

		
element.unview()

		

View options

Views have a number of options you can pass into them in the
settings parameter when registering a view using view().

		
class view()

		
		
iface

		The iface (a string) for which the view is registered. The view
will only be looked up on objects that provide the given
iface.

While it is optional and defaults to registering the view for all
JavaScript objects, you would almost always want to supply an
iface property to a view.

		
name

		The name of the view. It is optional, and defaults to
default. The name is used when a view is looked up, along with
the iface, but for lookup also the default name is
default. The difference between name and iface during lookup
that iface is provided from the object being rendered, while the
name is provided by the calling code as an argument to
element.render().

		
render

		A function which will be added as a method to the view. In it, the
developer can refer to this.obj to access the object the view
is rendering, and this.el to access the jQuery DOM element on
which the view is rendering. The el property is typically
manipulated in the render method to make the view actually do
something.

Supplying a render method is optional.

		
cleanup

		An optional cleanup function which will be called when the
(non-ephemeral) view is being cleaned up from the element it was
rendered on, either explicitly because element.unview() was
called on it, or implicitly because something else is being
rendered on the element.

		
ephemeral

		A boolean value. By default it is false. If set to true,
the view will not be associated with the element. This is useful
for views that are not really associated with the DOM, such as
popup messages or views that redirect to other views.

		
html

		A string with a snippet of HTML that should be inserted into the
DOM upon rendering. This will be done before any
view.render() function is called.

This property is optional, and by default there will be no HTML
snippet insertion.

		
html_url

		A string with a URL to a resource with a HTML snippet in it. This
HTML snippet will be loaded if the URL has not been previously
seen, otherwise it is retrieved from a cache. The HTML snippet is
inserted into the DOM as with html.

This property is optional.

		
jsont

		A string with a JSON template. The template is rendered with the
object being rendered as the context, and the resulting HTML
snippet is inserted into the DOM as with html.

This property is optional.

		
jsont_url

		A URL referencing a resource that is a JSON template. This
template will be loaded if the URL has not been previously seen,
otherwise it is retrieved from a cache. The HTML snippets that
results from rendering the template will be inserted into the DOM
as with html.

This property is optional.

		
subviews

		A JavaScript object literal describing subviews of this view.
Each property name define a jQuery selector that will be issued on
the element being rendered by the outer view that is being
rendered. The resulting elements will be have the sub view
rendered on them. The property value identifies a property on the
model object that is being rendered. This property is accessed: if
it is a sub object, it will be rendered directly. If it is a
string, this string is interpreted as a URL identifying the object
to be rendered, as with element.render().

To render a named subview, use a property value that is an array
instead: the first item is interpreted as the property name
identifying the subobject or URL to be rendered, and the second
item is the view name to use to look up the subview.

		
events

		A JavaScript object literal describing event handlers to hook up
for this view. Each property name is the name of the event, such
as click. The property value is either a function or a string.

If it is a function, this function is the event handler. It will
receive a single parameter that is the event. The event object has
a view property that you can use to access the view that
issued the event.

If it is a string, this is used to identify a method of the view
that is the event handler. This method also receives a parameter
ev that has a view property, but the view can in this case
also be accessed as this.

Obviel forms

A form structure is normally returned from the server-side. It should
have iface viewform.

Form options

		
class viewform()

		
		
widgets

		An array of form widget objects.

		
controls

		An array of form control objects. Defaults to an empty array.

		
data

		The object representing the form contents. Defaults to the empty
object and is maintained by the form.

		
disabled

		A boolean. If true, the whole form is rendered in a disabled
state and cannot be submitted.

		
validation_url

		A URL to do global validation on. Submitted to this URL will be
the form’s data object (as JSON). The server needs to decode
this JSON object and do validation on it. The server returns a
data structure (as JSON) with the same structure as what was
submitted, with the values replaced by error messages (or left
out). The minimum object a global validator needs to return is the
empty ({}) object. This object will be placed in the
global_errors attribute of the form.

		
errors

		The object representing the error messages currently visible in the
form. If this object is not empty, form submission will not proceed.

This defaults to the empty object and is maintained by the form.

		
global_errors

		The object representing server-generated error messages currently
visible in the form. If this object is not empty, form submission
will not proceed.

This defaults to the empty object and is maintained by the form.

Widgets

		
class Widget()

		
		
name

		The internal name of the widget. This will be the name of the property
under which the inputted value will be stored in the data object.

This must therefore be a valid avaScript property name.

		
title

		The label that will be shown for the widget in the user interface.

		
description

		A longer description of the widget that will be shown in the user
interface. May be omitted.

		
validate

		A sub-object describing how this widget is to be validated. Validation
properties differ per widget.

		
validate.defaultvalue

		The default value that should be shown in the widget if no
specific value is available in the data object.

		
class InputWidget()

		iface: input_field

Base class for all widgets based on the <input type="text"> field.

Derives from Widget().

		
width

		Width of the field in em. By default there is no explicit width
and the system uses the browser-defined default width of the input
field.

		
max_length

		The maximum length that may be entered into this widget by the
user. This is a physical limitation in the browser, not a
validation limitation. By default there is no max length.

		
disabled

		Render the widget as disabled and allow no input. By default,
disabled is false.

		
validate.required

		This widget is required: a value must be entered by the user
before the form can be submitted. By default, widgets are not
required.

Example:

validate: {
 required: true
}

		
class TextLineWidget()

		iface: textline_field

Lets the user enter a single line of text, in an <input
type="text"> widget. Becomes a string in the data object.

Derives from InputWidget().

		
validate.min_length

		The minimum input length in characters allowed.

		
validate.max_length

		The maximum input length in characters allowed.

		
validate.regs

		An array of zero or more objects. Each object must have a reg
property which is a JavaScript style regular expression, and a
message property which is a string. If the input does not
match reg, message will be displayed as the error message.

This allows you to write regular expression based custom
validators for user input.

		
class TextWidget()

		iface: text_field

Lets the user enter a multiline text in a <textarea>
widget. Becomes a string in the data object.

Derives from TextLineWidget().

		
width

		The width of the textarea in em.

		
height

		The height of the textarea in em.

		
class IntegerWidget()

		iface: integer_field

Lets the user enter an integer number. Floating point numbers are
not accepted, only integers. Becomes a JavaScript number in the
data object.

Derives from InputWidget().

		
validate.allow_negative

		If true, negative numbers are allowed as input. Defaults to false,
not allowing negative numbers.

		
validate.length

		Only allow input to a fixed number of digits given by
length. If not set, any amount of digits will be allowed.

		
class FloatWidget()

		iface: float_field

Lets the user enter a floating point number. Becomes a JavaScript
number in the data object.

Derives from InputWidget().

		
validate.separator

		Define the floating point separator. By default this is the period
(.), but could be set to , or something else to suit other
locales.

		
validate.allow_negative

		If true, negative numbers are allowed as input. Defaults to false,
not allowing negative numbers.

		
class DecimalWidget()

		iface: decimal_field

Lets the user enter a decimal number. Becomes a string in the
data object for parsing into a server decimal object.

Derives from InputWidget().

		
validate.separator

		Define the decimal separator. By default this is the period
(.), but could be set to , or something else to suit other
locales.

		
validate.allow_negative

		If true, negative numbers are allowed as input. Defaults to false,
not allowing negative numbers.

		
validate.min_before_sep

		Minimum amount of digits that need to be present before the separator.
If omitted, there is no minimum.

		
validate.max_before_sep

		Maximum amount of digits that are allowed to be present before the
separator. If omitted, there is no maximum.

		
validate.min_after_sep

		Minimum amount of digits that need to be present after the separator.
If omitted, there is no minimum.

		
validate.max_after_sep

		Maximum amount of digits that are allowed to be present after the
separator. If omitted, there is no maximum.

		
class BooleanWidget()

		iface: boolean_field

Lets the user enter a boolean, true or false in a checkbox,
using <input type="checkbox">.

Becomes a JavaScript boolean in the data object.

Derives from Widget().

		
class ChoiceWidget()

		iface: choice_field

Lets the user select a choice from a drop-down box. This uses
<input type="select">.

Becomes a string in the data object.

Derives from Widget().

		
empty_option

		The value that will be shown and submitted if the field is not
filled in. If not given, the first option in the drop down list will
be the default if the field is required.

		
width

		The width of the drop-down box in em.

		
choices

		An array of choices that the user can select. Each entry in the
array is an object with a value and a label property.
The value will be the value submitted, and the label will
be how this value is represented in the user interface.

		
class DisplayWidget()

		iface: display_field

This is a display-only field that the user is not allowed to edit. The
value will be shown in a element.

The server code is responsible for really forbidding changes
to fields represented by display widget.

Derives from Widget().

		
class HiddenWidget()

		iface: hiden_field

This is special form of the display field that will be hidden from
view, represented using <input type="hidden">.

Derives from DisplayWidget()

		
class DatePickerWidget()

		iface:: datepicker_field

This is data input widget which offers picking a date from a
calendar. Is represented in data in the yy-mm-dd format,
where yy is a four digit year, for example 2011-10-01.

Since this widget depends on jquery-ui for its implementation, it is
maintained in a separate field, obviel-forms-datepicker.js,
which should be included to be able to use this widget.

Derives from TextLineWidget()

		
dateFormat

		The format that the date should be displayed as. Note that
the date will always be saved in yy-mm-dd format, where
yy is a four-digit year, so for example 2011-11-01.

This follows the rules from jquery-ui’s datepicker:

http://jqueryui.com/demos/datepicker/#option-dateFormat

http://docs.jquery.com/UI/Datepicker/formatDate

By default the date format is mm/dd/yy.

		
showOn

		When to show the date picker.

This follows the rules from jquery-ui’s datepicker:

http://jqueryui.com/demos/datepicker/#option-showOn

By default the datepicker is shown when the button is clicked.

		
constrainInput

		This follows the rules from jquery-ui’s datepicker:

http://jqueryui.com/demos/datepicker/#option-constrainInput

By default it is set to false.

		
class AutocompleteWidget()

		iface:: autocomplete_field

This is a text line input with autocompletion, and can therefore be
used like a ChoiceWidget(). Autocomplete widgets can either
include all options directly in the form structure, or supply a
server URL on which to look up values to autocomplete. The latter is
more scalable if the amount of possible choices is very large.

Since this widget depends on jquery-ui for its implementation, it is
maintained in a separate field, obviel-forms-autocomplete.js,
which should be included to be able to use this widget.

Derives from TextLineWidget()

		
data

		The autocomplete data. This may either be an array of objects
with properties label and value, much like the possible
values for a ChoiceWidget(), or it can a string, in which
case it is interpreted as a URL.

If interpreted as a URL, the URL will get either a single
identifier parameter or a combination of a term and
limit parameters. If a single identifier parameter,
the server should interpret this as a value and should return
the label that belongs to it. If a term and a limit
parameter, term is a search term that the server should use
to look up matching label/value pairs, and return them as
an array with objects each with a label and value property. The
limit parameter is used to indicate to the server the maximum amount
of matches the server should return.

Custom widgets

Custom widgets will need to subclass InputWidget() and
provide some methods. This is the typical pattern:

obviel.iface('custom_field', 'input_field')

// constructor
module.CustomWidget = function(settings) {
 settings = settings || {};
 var d = {
 iface: 'custom_field' // set up iface
 };
 $.extend(d, settings);
 module.InputWidget.call(this, d); // call superclass
};

// set up inheritance
module.CustomWidget.prototype = new module.InputWidget();

module.CustomWidget.prototype.validate = function(value) {
 // use inherited validate function first
 var error = module.InputWidget.prototype.validate.call(this, value);
 // if we have an error in inherited validation, we are done, return
 // that error
 if (error !== undefined) {
 return error;
 }
 // custom validation goes here, either do: return undefined (or
 // plain bare return) or return error message
 return undefined;
}

// convert function is necessary if we convert to non-String JavaScript
// value. Can also be used for strings even if we don't convert
// away from it, for instance to check whether a date string is really
// parseable at all, and to format it to a common format if so.
// in addition convert and its pair convert_back can be used to update
// the browser DOM in more complex ways than the default implementation
// allows.
module.CustomWidget.prototype.convert = function(value) {
 // convert the empty input to null, so that validation for
 // required can do its work
 if (value === '') {
 // return an object with a ``value`` property with the converted value.
 return {value: null};
 }
 // try to interpret the input as the value type we want
 var asint = parseInt(value, 10);
 // if the interpretation did not succeed, return an object
 // with an ``error`` property with the error message.
 if (isNan(asint)) {
 return {error: 'not a number'};
 }
 // return an object with a ``value`` property with the converted value.
 return {value: asint};
}

// convert a JavaScript representation back into the widget representation
// (typically a string)
module.CustomWidget.prototype.convert_back = function(value) {
 // super call
 value = module.InputWidget.prototype.convert_back.call(this, value);
 return value.toString();
}

// finally register the widget as a view with Obviel
obviel.view(new module.CustomWidget());

 © Copyright 2011, Obviel Developers.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 		latest

 		0.-0

 		1.0b2

 		1.0b

 		0.11.2

 		0.11

 		0.10

 		0.9.1

 		0.9

_static/test/index.html

 Automatic tests

 		obviel.js tests

 		obviel-forms.js tests

 		obviel-patterns.js tests

 		JSHint

 Manual tests

 		form

 		form with global validation error

 		group widget

 		composite widget

 		repeating widget

 		jquery ui buttons

 		deferred

 Demos

 		form

 		patterns

_static/jshint-test.html

 JSHint Tests

_static/manualtest/form.html

_static/dependencies/smoothness/images/ui-bg_glass_75_dadada_1x400.png

_static/dependencies/smoothness/images/ui-bg_glass_65_ffffff_1x400.png

_static/test/images/ui-icons_ffd27a_256x240.png
~ Ler o
s Larse

v Centoen T
t - centlonE
s secovea
+u oo

I s®apLaTan
am eBBRALiuY
o+ xxpoKOBEE
A0 soomE

> R
vrucoE®
©00000000000000
moeoaa

W =44

% e

integration.html

 Navigation

 		
 index

 		Obviel 0.10 documentation »

Integration into other Systems

Fanstatic

Obviel has been integrated into Fanstatic [http://www.fanstatic.org], a WSGI-based framework for
publishing web resources for Python web frameworks. To include Obviel
in a Python web framework that uses Fanstatic, all you need to do is
import from the package js.obviel [http://pypi.python.org/pypi/js.obviel], which is available on PyPI.

 © Copyright 2011, Obviel Developers.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 		latest

 		0.-0

 		1.0b2

 		1.0b

 		0.11.2

 		0.11

 		0.10

 		0.9.1

 		0.9

toc.html

 Navigation

 		
 index

 		Obviel 0.10 documentation »

Table of Contents

Contents:

		Features
		Obviel core

		Hyperlinking

		HTML generation

		Obviel Forms

		Code

		Obviel: Object/View/Element for jQuery
		Introduction

		How to include Obviel on your web page

		Rendering a view

		View lookup

		Properties available on views

		html and html_url

		jsont and jsont_url: JSON template

		Rendering Sub-Objects

		Obviel and hyperlinks

		Callbacks

		Additional methods

		View Inheritance

		Subviews

		Declarative Event Registration

		Bootstrapping Obviel

		Element Association

		Cleanup

		Events Sent by Obviel

		Iface extension

		Obviel Forms
		Introduction

		HTML forms

		Form patterns

		How Obviel deals with forms

		Obviel API
		Obviel core

		Obviel forms

		Demo code

		Community
		Mailing list

		IRC

		Integration into other Systems
		Fanstatic

		Developing Obviel
		Sources

		Running the tests

		Building the documentation

		Obviel test server

Indices and tables

		Index

		Search Page

 © Copyright 2011, Obviel Developers.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 		latest

 		0.-0

 		1.0b2

 		1.0b

 		0.11.2

 		0.11

 		0.10

 		0.9.1

 		0.9

_static/manualtest/groups.html

manual.html

 Navigation

 		
 index

 		Obviel 0.10 documentation »

Obviel: Object/View/Element for jQuery

Introduction

So Obviel promises a better structure for your JavaScript
applications.

What does Obviel really do? Obviel lets you associate views with
JavaScript objects and DOM elements. You are the one who creates the
views, and you will find that you can decompose much of your
JavaScript application into views.

In the view definition, you write JavaScript code that can render the
information in the JSON object into the browser DOM. This interplay of
object, view and element is central to Obviel. It also inspires
its name, Ob-vi-el.

What does Obviel ask you to do?

		you must, typically on the server side, add simple type information
to the JSON objects that you want to render with views on the
client. This is done using the ifaces property. We also call such
JSON objects model.

		you must, on the client side, define views that know how to render
the different JSON objects your server can send back.

		you hook up the views to the JSON objects using the iface.

		you can then render a view for an object on a DOM element by using
a special render extension Obviel adds to jQuery.

All this is pretty dense, so we’ll go into much more detail about this
now.

How to include Obviel on your web page

First you need to know how to include Obviel on a web page. You need
to make sure that src/obviel.js is published somewhere on your web
server. You also need jQuery [http://jquery.com/], and optionally JSON template [https://json-template.googlecode.com/svn/trunk/doc/Introducing-JSON-Template.html].

To include Obviel, you first need jQuery as a dependency:

<script type="text/javascript" src="/path/to/jquery-1.6.1.js"></script>

If you want Obviel’s json-template support, you can include JSON
template (but this is optional):

<script type="text/javascript" src="/path/to/json-template.js"></script>

Finally, you need to include Obviel core itself:

<script type="text/javascript" src="/path/to/obviel.js"></script>

Obviel is now available as obviel in your JavaScript code.

Here is a suggestion on how to structure your code, using the
JavaScript module pattern [http://www.adequatelygood.com/2010/3/JavaScript-Module-Pattern-In-Depth] (global import):

(function($, obviel) {
 // .. views are defined here ..

 $(document).ready(function() {
 $(some_selector).render(some_object_or_url);
 });
})(jQuery, obviel);

We’ll go into what you can put in for some_selector and
some_object_or_url below.

Rendering a view

Now that we have Obviel available, we’ll start with the last bit
first: how do we actually render a view for an object on an
element?

A view is a JavaScript component that can render an object into an
element in the browser DOM tree. This is done using by calling the
function render on the result of a JQuery selector:

$('#foo').render(model);

If you have Obviel installed, this render function will be
available. Since the DOM needs to be available when you start
rendering your views, you need to do your view rendering in the
$(document).ready callback, or in code that gets called as a
result of the first view rendering.

So what does this render call do? It will look up a view for the
JavaScript object model and then ask that view to render the model
on the element indicated by the jQuery selector #foo.

Typically you would use selectors that only match a single element,
but if you use a selector that matches more than one element, view
lookup is performed multiple times, once for each matching element.

Now let’s look at the pieces in more detail.

What is model? It’s just a JavaScript object with one special
property: ifaces:

var model = {
 ifaces: ['example'],
 name: 'World'
};

Typically with Obviel models are JavaScript objects generated as JSON
on the server, but you could basically use any JavaScript object, as
long as it provides an ifaces property. The ifaces property lets
models declare what type they have.

As you can see, ifaces is a list of strings; each string
identifies an iface that this object declares – typically only one is
enough.

What is a view? It’s a special JavaScript object registered with
Obviel that at minimum says how to render a model on an element:

obviel.view({
 iface: 'example',
 render: function() {
 this.el.text("Hello " + this.obj.name + "!");
 }
});

You see how iface comes in again: this view knows how to render
objects of iface example.

So imagine we have the following HTML in the browser DOM:

<div id="foo"></div>

What happens when you invoke the following?

$(‘#foo’).render(model);

The DOM will be changed so it reads this:

<div id="foo">Hello World!</div>

So, it has rendered "Hello World!", where World comes from the
name property of the model object being rendered.

The steps taken are:

		Obviel looks at the ifaces property of the model being
rendered, in this case [`example`].

		Obviel looks up the view registered for the iface example in its
view registry.

		Obviel creates a clone of the registered view object from this view
that has as its el property the element being rendered on, and
obj property the object being rendered.

		call the render method on the view.

		the render method then does whatever it wants, in particular
manipulating the DOM using jQuery, as we do here to set the text of
the div.

View lookup

ifaces versus iface on the model

In our examples, the model property name is ifaces and an array,
while the view property name is iface and a string. The idea is that a model
may have more descriptions of what the data is, but a view only
knows how to render one type of data.

In most cases however your models will only have a single iface. It
can be cumbersome or error prone to always have to remember to use
ifaces and an array for models. So Obviel understands a few
alternatives:

		give your model object a single iface property with the iface
as a string.

		continue to use ifaces as the property name but use a string,
not an array, to assign a single iface.

It is an error however to supply a model object with both an iface and
an ifaces property.

Dynamic view lookup is what allows loose coupling between client and
server. The primary mechanism of lookup is by the iface marker on
the model. A model can declare with an iface what kind of model it is,
and this way a view can declare what kind of model it is associated
with.

An iface is in essence just a string marker:

var elephant = {
 ifaces: ['animal'],
 color: 'grey'
};

var lion = {
 ifaces: ['animal'],
 color: 'golden'
};

Each model can declare what kind of model it is using these iface
markers.

When a view is registered, the iface it is associated with should be
provided:

obviel.view({
 iface: 'animal',
 render: function() {
 this.el.text('The animal is ' + this.obj.color);
 };
});

If you now render a model that declares iface animal, the view
will be used:

$('#animal').render(elephant);

will render in the element indicated by #animal the text:

The animal is grey

and this:

$('#animal').render(lion);

will render like this:

The animal is golden

What if we want to make an exception for elephants, though? We can do
that too, by registering another view for the elephant iface and
using that instead:

var elephant = {
 ifaces: ['elephant'],
 color: 'grey'
};

obviel.view({
 iface: 'elephant',
 render: function() {
 this.el.text('This very big animal is ' + this.obj.color);
 };
});

Now if we were to render a list of animals, and one of them happened to
be an elephant, we’ll see that the exception for elephant will be used.

In some cases an iface is not enough, and you can further distinguish
views by name. The name is really only needed when you want to
have different ways of rendering the same object (or URL), perhaps
depending on where a user clicks, or what tab is open, etc. Here’s an
example:

obviel.view({
 iface: 'animal',
 name: 'alternate',
 render: function() {
 this.el.text("Color of animal is: " + this.obj.color);
 };
});

This named view can be explicitly invoked by passing its name as
a second argument to the render function:

$('#animal').render(lion, 'alternate');

will result in:

Color of animal is: golden

As said before, names are optional, and aren’t used very often. By
default the name is default.

The iface declaration for a view is optional too, though you should
usually provide it. If you leave out an iface in a view registration
you register a fallback view for all objects.

Properties available on views

When you render a view, a view instance is created that has several
properties which you can access through this in the
render function of a view. We’ve seen some of them before, but
we’ll go through them systematically now.

el

The element that this view is being rendered on. This is a jQuery
object, so all the usual jQuery functionality will work. The element
is where the view expresses itself during rendering: it adds
sub-elements to this element, or changes its text() value, hooks
up event handlers, etc.

obj

This is the model that the view is supposed to render. You access
properties of this object to determine what to render.

name

This is the name of the current view. By default it is default.

html and html_url

A view can be configured so that it renders a piece of static HTML
into the element (using the jQuery .html function) before the
render function is called. You do this by adding a html
property to the view.

This is useful when you have a view that wants to insert a HTML
structure into the DOM; this way you can avoid manual DOM
manipulation. Doing this can also add to the clarity of the code.

Here’s an example:

obviel.view({
 ifaces: ['foo'],
 html: '<div class="a_class">Some HTML</div>',
 render: function() {
 var el = $('.a_class', this.el);
 el.text("Changed the text!");
 }
});

This will add the structure <div class="a_class">Some HTML</div>
into the element the view is rendered on, and then calls the
render function, which can now make some assumptions about what is
in the element.

If the HTML fragment to insert has multiple lines, it is nicer to
maintain it in a separate file instead of in an embedded string. The
view can also refer to a static HTML resource on the server using the
html_url property:

obviel.view({
 ifaces: ['foo'],
 html_url: 'http://www.example.com/some.html',
 render: function() {
 // ...
 }
});

The HTML referred to by html_url will be cached by the system, so
when you render the view next time no more request will be made to the
server to retrieve the HTML fragment.

In some cases you may want to let the server supply the HTML in the
model instead of using it from the view. If the object to be rendered
has a html or html_url property those will be interpreted as
if they were on the view.

If both html and html_url are found on a view or a model, the
html property has precedence. The html and html_url
properties of the model have precedence over any defined on the view.

jsont and jsont_url: JSON template

A combination of static HTML and jQuery scripting is certainly dynamic
enough, but sometimes using a template language can result in more
readable code. By default support for JSON template [https://json-template.googlecode.com/svn/trunk/doc/Introducing-JSON-Template.html] is
included. Obviel also provides an API to extend it to support other
template languages.

The properties jsont and jsont_url work like html and
html_url and can be provided both by the view and the model. Let’s
look at an example:

obviel.view({
 iface: 'person',
 jsont: '<div>{name}</div>'
});

$('#somediv').render({
 iface: 'person',
 name: 'John'});

This will result in:

<div>John</div>

When rendering a JSON template, the object being rendered is combined
with the template and the resulting HTML is inserted into the element
that render was invoked for.

Rendering Sub-Objects

How Partitioning into Views Helps

Just to make sure to help you to convince view partitioning is good,
we’ll throw some concepts at you. View partitioning aids:

		comprehension - each view can be understood on its own, without
having to read through a mass of other code.

		reuse - views can be reused in other contexts.

		pluggability - we can easily plug in different views into the
page, just by changing our code.

		server control - the server can control how the page is composed.

		loose coupling between server and client - the server code still
does not need to have intimate knowledge of what the client code
does – just the ifaces it understands and what properties are
expected on an object with a certain iface.

And all these are Good Things.

When presenting a complicated web page, it makes sense to split the underlying
objects that this web page represents into individual sub objects. So,
you might for instance have a JSON structure like this:

{
 ifaces: ['page'],
 parts: [
 {
 ifaces: ['text'],
 text: "Hello world"
 },
 {
 ifaces: ['list'],
 entries: ['foo', 'bar', 'baz']
 }
]
}

This has an outer JSON object with the iface page, and in there there
are two parts, one of iface text and one of iface list.

How would you set out to render such a thing with Obviel views?
Instead of creating one big view that does everything, we can
decompose this into a number of subviews. Let’s first create a view
for the text iface:

obviel.view({
 iface: 'text'
 render: function() {
 var p_el = this.el.append('<p>');
 p_el.text(this.obj.text);
 }
});

This view adds a p element to the DOM under which it is rendered,
and renders the text property of the underlying object into it.

We’ll also create a view for list:

obviel.view({
 iface: 'list'
 render: function() {
 var self = this;
 var ul_el = self.el.append('');
 $.each(self.obj.entries, function(index, entry) {
 var li_el = ul_el.append('');
 li_el.text(entry);
 });
 }
});

This creates a ul element in the DOM and renders each entry in the
entries list as a li element with text in it. Note the use of
the common JavaScript technique of assigning this to another local
variable, self by convention in Obviel code, so we have an easy
reference to it in the nested functions we define inside.

Now let’s create a view that renders all the page iface:

obviel.view({
 iface: 'page',
 render: function() {
 var self = this;
 $.each(self.obj.parts, function(index, part) {
 var div_el = self.el.append($('<div>');
 div_el.render(part);
 });
 }
});

This view creates a div for each part in the parts
property. You can see how delegation to subviews comes in: we render
each part individually. You can also see something else: the page
view has no knowledge of what these sub views are, and could render
any list of them – it’s entirely dependent on the object it is asked
to render.

Partitioning code into views is useful: it’s the Obviel way. You’ll
find it makes your code a lot easier to manage.

You can write the sub-view rendering code manually and often it is not
cumbersome, but for some common cases Obviel provides a facility to
automate this, see Additional methods.

Obviel and hyperlinks

True REST

In a REST application design, the client does not have particular
knowledge about the URLs the server presents – instead the server is
in control of the URL space and sends information about URLs to the
client. This is the way normal web browsing works too – the web
browser does not know about particular hyperlinks, but instead the
user just clicks on links in web pages it retrieves from the
server. This principle is called Hypermedia as the Engine of
Application State [http://en.wikipedia.org/wiki/HATEOAS].

In many practical applications that are otherwise RESTful this
principle is not followed – the JavaScript code has intimate
knowledge about what URLs the server has available and this
structure is hardcoded in the JavaScript code base. This creates a
tighter coupling between client and server code, and that sucks.

If it sucks, why do people do such things? Because it’s easier to
write such code. The asynchronous nature of AJAX means that when you
try to do it the right way, you tend to end up with a big nasty ball
of nested functions; callbacks within callbacks within callbacks.

But Obviel makes it dirt simple to let the server be in control of
URLs - it’s actually easier to write client-side code this way
with Obviel, as much of the nitty-gritty about Ajax requests is
handled by Obviel itself.

On the server, we recommend you use a web framework that offers some
help in generating URLs for models and views. But even if you can’t
use such a framework, it’s still much better to only have to
hardcode the knowledge about URLs in the server code, and not in the
client too.

We saw how Obviel can be asked to render JavaScript objects. We also
saw how you can compose views together by composing JavaScript objects
together and then having views defer to each other. But the server
code doesn’t have to send a whole composed object to the client at
once - sometimes that’s too cumbersome (the server state changes), and
sometimes accessing all the data on the server all at once to send to
the client is just too costly. Obviel has a way out: you can hyperlink
objects together using URLs, much like how web pages are hyperlinked
together.

Obviel can render URLs just like it can render ojbects. When you pass
a string to the render method instead of an object, Obviel will
interpret it as a URL. It will send a GET request to the server to
fetch a JSON object from that URL, and then render that object. For
example:

$('#foo').render('http://example.com/somejson');

will fetch the JSON from http://example.com/somejson, and then
call render on that object:

$('#foo).render(retrieved_obj)

This behavior of Obviel allows you to create a hyperlinked structure
of JavaScript objects. We can demonstrate that using the page view
we created before. We’ll show it here again, unchanged:

obviel.view({
 iface: 'page',
 render: function() {
 var self = this;
 $.each(self.obj.parts, function(index, part) {
 var div_el = self.el.append($('<div>');
 div_el.render(part);
 });
 }
});

We also leave the other views to render text and list ifaces
unchanged.

Instead of putting full-fledged objects in the parts array, you can
also put hyperlinks in there. Consider the following object:

{
 ifaces: ['page'],
 parts: [
 'http://example.com/hello',
 'http://example.com/some_list'
]
}

and then under the http://example.com/hello URL we return this:

{
 ifaces: ['text'],
 text: "Hello world"
}

and under the http://example.com/some_list URL we return this:

{
 ifaces: ['list'],
 entries: ['foo', 'bar', 'baz']
}

Rendering this page object will result in the same web page as
before - Obviel will automatically request the underlying URLs and
render the objects.

So Obviel’s understanding of hyperlinks gives us more cool things:

		even more flexibility – you can create URLs that return an object
with a different iface depending on the circumstances, changing
the behavior of the user interface on the fly.

		looser coupling between server and client - Obviel’s understanding
of hyperlinks increases your ability to create such loose coupling.

		easier to create truly RESTful applications - see the sidebar for
more info on why that’s good.

Callbacks

In some cases you need to know when a view has finished rendering;
this is particularly useful when you are writing automated tests that
involve Obviel. The Obviel test suit itself is a good example of
this. You can supply a callback by passing a function to the
render method:

el.render(obj, function() { alert("Callback called!") };

You can use this in the callback to refer to the view that invoked
the callback.

Additional methods

A view is just a JavaScript object, and you may therefore supply extra methods that
it calls from the render method to assist in the rendering of the
view and setting up of event handlers:

obviel.view({
 render: function() {
 this.foo();
 },
 foo: function() {
 // ...extra work...
 }
});

You can also add extra properties:

obviel.view({
 render: function() {
 this.foo();
 },
 extra: "An extra property"
});

View Inheritance

While in many cases the additional methods strategy as described
previously is sufficient, in more complex cases it can be useful to be
able to create a new view by inheriting from another view. The Obviel
form system uses this approach for its widgts.

To understand how view inheritance works, you first need to understand
that the following registration:

obviel.view({
 render: function() { ... }
});

is in fact a shorthand for this registration:

obviel.view(new obviel.View({render: function() { ... }}));

Obviel automatically creates a basic Obviel View if a bare
object is passed to the view registration function.

You can however also create new view objects by subclassing View
yourself:

var DivView = function(settings) {
 var d = {
 html: '<div></div>'
 };
 $.extend(d, settings);
 obviel.View.call(this, d);
};

DivView.prototype = new obviel.View;

DivView.render = function() {
 // ...
};

Now the new view can be registered like this:

obviel.view(new DivView());

You can also create your own base classes that derive from View
that provide extra functionality, and inherit from them.

Subviews

As we have discussed earlier, many views are composed out of other
views.

You can invoke sub-views by hand in a render method, like this:

obviel.view({
 render: function() {
 $('.foo', this.el).render(this.obj.attr);
 }
});

This will render a subview on the element matched by class foo for
the model indicated by this.obj.attr. this.obj.attr may be a
sub-object or a URL referring to another object.

Doing this by hand is not too bad, but Obviel also allows a shorter,
declarative way to express this:

views.view({
 subviews: {
 '.foo': 'attr'
 }
});

This does the same thing as the previous example.

The subviews property, if available, should define a mapping from
jQuery selector to model property name. If the view has a render
function, subviews are rendered after the render function of the
view has been executed.

So, if you have this view:

views.view({
 subviews: {
 '#alpha': 'alpha',
 '#beta': 'beta_url'
});

And render it with the following context object:

{
 alpha: {text: 'foo'},
 beta_url: '/beta.json'
}

the system will, in effect, call:

$('#alpha', this.el).render({text: 'foo'})

and:

$('#beta', this.el).render('/beta.json')

If you want to invoke a subview with a specific name, you can provide
a name for subviews by passing an array instead of a string as the
value of the subviews mapping:

views.view({
 subviews: {
 '#selector': ['foo', 'name']
 }
});

Here, a subview is registered for the selector #selector, the data is looked
up on the context object using property name foo, and the view is looked
up using name.

Note that if a callback is provided to render(), it will be called after the
main view and all its subviews are done rendering.

Declarative Event Registration

Often a view will need to attach event handlers to elements rendered
by the view. You can do this by hand:

obviel.view({
 iface: 'foo',
 render: function() {
 var self = this;
 self.el.click(function() {
 self.el.text("clicked!");
 });
 }
});

Like with subviews, Obviel allows a declarative way to hook up events. Here
is the equivalent of the above:

obviel.view({
 iface: 'foo',
 render: function() {},
 events: {
 'click': function(ev) {
 ev.view.el.text('clicked!");
 }
 }
});

Like standard jQuery, the event handler gets an event object, but this
object will have a special property view which is the view that
this event is associated with.

There is another way to express this:

obviel.view({
 iface: 'foo',
 render: function() {},
 events: {
 'click': 'handle_click'
 }
 }
 handle_click: function(ev) {
 this.el.text('clicked!");
 }
});

In this case instead of directly hooking up the event handler, we
refer to a method of the view itself as the event handler. You can
refer to the view and its properties using this just like you do
with render. The event handler also receives the usual event
object as the first argument.

All declaratively defined events are registered after the view has
been rendered.

Bootstrapping Obviel

Obviel can start working with just a single URL; two if you need
templates or HTML snippets. All the other URLs in the application it
can access by following hyperlinks in JSON.

This is an example of Obviel bootstrapping code in your application:

$(document).ready(function() {
 $('#main').render(app_url);
});

This renders the object at app_url when the DOM is ready, and will
render it into the HTML element identified with the main id.

We call the object referred to by app_url the root object. The
root object should include hyperlinks to other objects in your
application, which it will then in turn render as sub-objects.

The question remains how to actually set app_url in your
application. It is a URL that will be dependent on how your
application is installed.

One way to do it is to exploit your web framework’s server-side templating
system, and set it in a <script> element somewhere in your web page:

<script type="text/javascript">
 var app_url = "[the app url goes here using a template directive]";
</script>

Another way is to include a separate JavaScript file that you dynamically
generate, that only sets app_url:

var app_url = "[the app url goes here, using server-side programming]";

There is a second URL that is handy to include using one of these
methods as well: template_url. This is the URL that identifies
your template (or HTML snippet) directory. It could for instance look
like this:

http://example.com/templates/

Note how it ends with a forward slash (/).

Once template_url is available, your views can refer to individual
templates like this:

v.view({
 html_url: template_url + 'some_snippet.html'
});

You can set up template_url in the same way you set up
app_url, though there is one extra requirement: template_url
must be known before any Obviel views are registered, whereas
app_url only needs to be known when the DOM is ready. If you are
going to set template_url it is therefore important to do this
early, in a <script> tag that comes before the <script> tag
that includes your code that registers views. For example:

<script type="text/javascript">
 var template_url = "http://example.com/templates/";
 var app_url = "http://example.com/app_root";
</script>
<script type="text/javascript" src="http://example.com/obviel_app.js"></script>

Element Association

Element Association Background

Let’s consider form submission. In most cases when a form gets
submitted, the server sends back data to fill the space formerly
occupied by the form, either new form data (when there were form
errors or just because we are displaying an edit page) or just the
data of the object that we’ve added or edited.

It is however also quite common to get back data for a parent
element, or grandparent element, or even for a completely unrelated
element. The form may for instance have been used to add, remove or
update a record in a table view or tree view, which we want to
refresh. Alternatively the response may contain a message, or status
information, that needs to be displayed.

When the user initiates such an action (for instance by pressing a button),
we could define an event handler that retrieves the appropriate ancestor
element from the DOM and then retrieving the view for that element using
the view() method.

This however means tight coupling: the button handler, processing
the server response, now needs to know about which exact element the
view is that we need to refresh. And since the subview that causes
the outer view to refresh is a subview, we often know there is an
outer view in that case.

So we want to be able to provide a structure from the server that
does not contain presentation information (where should the object
be rendered) and have it displayed on an element other than the
‘current’ one.

Obviel supports this use case: when a view is rendered on an
element, the element becomes associated with that view. When you
render the same view (with the same iface and name) for any
descendant element of this associated element, Obviel will go up the
parent element chain and rerender the view for the ancestor element
instead.

This means that if you .render() an object on an element that is
a descendant of an element which had a view already rendered for
that iface (and name), the view will render on that
element, not the current context element you supply to Obviel.

In some cases element association is not desirable. If you don’t
want a view to associate itself with an element at all, you can set
its ephemeral property to true. You can use this for views
which really should leave no trace, such as popup notices, or
redirect to another view.

When a view is rendered on an element, it remains associated with that
element, unless the ephemeral property of the view is set to
true. If a view is associated with an element, rendering an object
of the view’s iface (and name) for any sub-element will render
on the outer element instead. The sidebar has more background on this
feature.

To retrieve the associated view of an element, you can use the
$(el).view() function to get it back again.

To access a view in this element or its nearest parent, use
$(el).parent_view().

To remove the element association, you can call $(el).unview().

To re-render a view on the element again, use $(el).rerender().

Cleanup

When a view is rendered on an element that already had a view
associated with it, or when a view is unrendered using unview,
Obviel calls the cleanup method on the view. You can put in a
special cleanup method on the view that gets called to perform the
cleanup.

Events Sent by Obviel

Obviel triggers two kinds of events:

		render-done.obviel

		render.obviel

These will both be triggered on the element that the view is rendered
on. Both event objects will also have a special view property with
the view that triggered the event.

The render-done.obviel event can be used to take action when the
view is done rendering entirely (including the rendering of any
subviews).

The render.obviel event is an internal event of Obviel; Obviel
sets up an event handler for this by default on the document, and also
sets up an event handler for this for elements that have a view
associated with it. The latter event handler will only take action if
the view being rendered has the same iface and name properties
as the view that was associated with the element – it is used to
implement Element Association behavior.

Iface extension

It is sometimes useful to be able to register an iface more
generically, for a whole selection of related objects. We may have
more particular person objects such as employee,
contest_winner, etc, but if we register a view for person
objects we want it to automatically apply to those other types of
objects as well, unless we registered more specific views for the
latter.

Let’s consider the following object describing a person:

>>> bob = {name: 'Bob', location: 'US', occupation: 'skeptic',
... ifaces: ['person']}

>>> obviel.ifaces(bob)
['person', 'base', 'object']

So far nothing new. But ifaces themselves can have an extension
relationship with each other: iface b can be declared to
extend iface a. We’ve already seen an example of this, because
person automatically extends the base iface base.

If a view is declared for a certain iface, it is also automatically
declared for all ifaces that extend that iface.

So let’s imagine we have an iface employee that extends the
person iface. We can tell the system about it like this:

>>> obviel.extendsIface('employee', 'person')

An iface may extend an arbitrary amount of other ifaces, but circular
relationships are not allowed. The obviel.ifaces function knows
about extensions. So, let’s say that we have an employee object:

>>> employee = {name: 'Bob', location: 'US', occupation: 'skeptic',
... wage: 0, ifaces: ['employee']}

Since we said before that any employee is also a person, the
following is true:

>>> views.ifaces(employee)
['employee', 'person', 'base', 'object']

Note that interfaces are sorted by topological sort, with the most
specific interfaces at the start. When looking up a view for an
object, this is useful to ensure that the views registered for the
most specific interfaces are found first.

 © Copyright 2011, Obviel Developers.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 		latest

 		0.-0

 		1.0b2

 		1.0b

 		0.11.2

 		0.11

 		0.10

 		0.9.1

 		0.9

search.html

 Navigation

 		
 index

 		Obviel 0.10 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011, Obviel Developers.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 		latest

 		0.-0

 		1.0b2

 		1.0b

 		0.11.2

 		0.11

 		0.10

 		0.9.1

 		0.9

_static/demo/form-demo.html

 An Obviel form demo

 This is a simple form demo. It doesn't submit to the server, but
 instead will render the JSON object onto the page whenever you
 press the "Examine data" button.

 When you press the "Change data" button the underlying data object is
 updated, and the form is updated right away.

 Read the source of form-demo.js to see how it is all set up.

_static/comment-close.png

_static/dependencies/smoothness/images/ui-bg_glass_95_fef1ec_1x400.png

_static/up-pressed.png

_static/manualtest/repeating.html

 Examine

_static/dependencies/smoothness/images/ui-bg_flat_75_ffffff_40x100.png

_static/test/test-obviel.html

 tests for obviel.js

_static/dependencies/smoothness/images/ui-bg_glass_75_e6e6e6_1x400.png

_static/dependencies/datatables/images/sort_desc.png

_static/down.png

_static/comment.png

_static/dependencies/smoothness/images/ui-icons_2e83ff_256x240.png
~ Ler o
s Larse

v Centoen e
t centlonE
“s secovea
+u oo

1 s®apLaTan
am eBBAALiuY
o+ xxpoxOBE@
A0 soomE

> s
vrucDE®
©00000000000000
moeooam

I =44

% e

_static/dependencies/datatables/images/sort_desc_disabled.png

_static/dependencies/datatables/images/sort_asc.png

_static/ajax-loader.gif

_static/dependencies/datatables/images/forward_disabled.jpg

features.html

 Navigation

 		
 index

 		Obviel 0.10 documentation »

Features

Obviel core

		Decouple views from each other and from the server: URL-agnostic
views, Javascript agnostic server.

		deep jQuery integration with the render function:
$('#foo').render(obj)

		Declarative composite views (subviews).

		Declarative setup of event handlers.

		Support for long and short-lived views.

Hyperlinking

		Obviel works with RESTful data structures on the server: hyperlinked
JSON.

		Supports bootstrapping single-page applications from a single URL;
all the rest of the information can be retrieved through hyperlinks.

HTML generation

		Support for client or server-side HTML generation.

		Support for static HTML inclusion.

		JSON Template template language support.

		Pluggable system for client-side template languages, so that other
client-side template languages can be plugged in.

Obviel Forms

		Powerful form framework built on basic Obviel views and JSON.

		Forms load and save JSON directly, no HTML form decoding or
generation on server, just work with JSON.

		Widgets for textline, text, integer, float, decimal, boolean
(checkbox), choice (drop-down), display, date, autocomplete, and
more.

		Client-side validation: instant error messages if the user ends the
wrong data.

		Server-side validation support for complex validation requirements
that involve multiple fields.

		Easily extensible with new widgets.

		Powerful composite and repeating fields to construct complex nested
forms out of simple widgets: fields that represent sub-objects and
arrays of objects.

		Integration with gettext i18n framework for custom translation of
error messages.

Code

		extensive unit test coverage

		well-structured JavaScript code that eats its own dogfood: Obviel
Forms built on Obviel core.

		Obviel core is less than 8 kB of minified JavaScript code, Obviel forms
library is 22 kB. gzipped you can include them both in less than 10
kB!

Want to know more? Go on to read the Obviel core manual.

 © Copyright 2011, Obviel Developers.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 		latest

 		0.-0

 		1.0b2

 		1.0b

 		0.11.2

 		0.11

 		0.10

 		0.9.1

 		0.9

_static/file.png

_static/dependencies/smoothness/images/ui-icons_454545_256x240.png
AT A vECr SO

AN avadrse
R R T
TraNlsenTrONT L.
wrefesasovea
rHTEO R e
EEDOAO®MP2LB8TBBLI
ANDE S OBBALLIBYRS
O+ d-=xXPOKOBBEBT
AO:?veconx

[R

vrucoE®

00000000000000
moeoam

W =44

_static/test/images/ui-icons_222222_256x240.png
AT A vECr SO

AN avadrse
I T
TraNlsenTrONT L.
wrefesasovea
rHCEO R e
EEDOAO®MP2B8FTBBLI
ANDE S OBBALLIBYRS
O+ d-=xXPOKOBBEBT
AO:?veocowx

S R

vrucoE®

©00000000000000
soeoam

I =44

_static/test/images/ui-icons_ffffff_256x240.png
A1y a v
R
R R e
TN lcenTonnTae R
brucssarovea
+EeBanee
EwRENEREPLEFALNO
ARR = /OMBAAALOYRS
smEe

e++-—xxS9KEE
AD:?vecons
. a4
VT
000000000000
mmmoao

I =1 =2z

form.html

 Navigation

 		
 index

 		Obviel 0.10 documentation »

Obviel Forms

Introduction

Obviel forms are a way to create web forms. Obviel forms are
interactive and allow you to create complex forms with ease.

HTML forms

It is instructive to briefly examine HTML forms and patterns involving
them, before we dive into the details of Obviel forms and how these
patterns are implemented.

A HTML form consists of a HTML form element. Inside the form
element are various input, textarea and select elements
describing the fields of the form that the user can fill in. In
addition there are one or more button or submit input elements
that let the user submit the form, or cancel the submission. More
complex JavaScript asssisted input widgets may also exist, for
instance to allow the user to enter a date.

When the form is submitted, it is sent to a particular URL, identified
with the action attribute on the form tag. This initiates a
form submission. The entered data are encoded, either in the URL if
the form is submitted with a GET request, or in a form data format
when doing a POST submission.

The web server software or web framework on the server side that you
use knows how to decode the form data, and then hands it to your
application in some way, to take an action: for instance to add a
record to a database.

When browser submits a form to the action URL, the action URL also
sends back a HTML response, which the browser then displays. This can
contain the results of the form processing.

Form patterns

Form handling in an application tends to follow certain
patterns. We’ll discuss some of these patterns and their traditional
implementation here.

Add forms and edit forms

An add form is used to add new information to the application: a blog
entry, someone’s address, or whatever else is relevant to the
application domain. Add forms are empty when they are displayed first:
its fields are either empty or have a default value in them that the
user can alter.

An edit form is used to change existing information in the
application: change a blog entry, modify your user account data, and
so on. Edit forms are shown filled-in when you open them: the fields
show the information that you are about to change, and allows you to
modify them.

Conversion and validation

When a form is submitted, a form needs to be validated: for instance
checking whether a number is in range, or a text input is not too
long, or a list is one of several allowed values. A very common
validation is to make sure a required value was filled in at all.

When a form is submitted, form data also needs to be converted: for
instance, numbers are inputed as text strings, and need to be
converted to actual numbers that the underlying application can deal
with. A checkbox may be turned into a true/false value, and a date
string needs to be parsed into a date object. Conversion needs to take
place before validation can take place.

Conversion and validation can be client-side or server-side.

Client-side validation, typically in JavaScript, lets the form give
instant feedback to the user that is fillin in the form, before the
user even submits the form. This increases the usability of the form,
as the user does not need to wait for a relatively long submit/reload
cycle in order to get this information. Client-side validation does
not ensure that the user really inputs the allowed information
however.

Server-side validation has the benefit of being secure: the server can
validate that the data entered by the client is really allowed by the
application. This is important especially if the web application faces
the public.

A traditional pattern of doing HTML forms is doing no client-side
validation at all except for what is offered by bare HTML, and doing
all the validation on the server. To display validation errors a
round-trip procedure is required, where the whole form is submitted to
the server. If conversion or validation failed, the whole form is
shown again showing validation errors, along with any values the user
previously filled in.

Nesting and repeating fields

Advanced form patterns involve composite and repeating fields. A
composite field is a field composed out of other fields. An example of
a composite field is a date field that consists of three fields
allowing you to enter the year, month and day separately from each
other. A repeating field is a field where a list of values (sub-forms)
needs to be entered. A form where you enter the crew of a ship for
instance should allow you to enter more than one crew member, adding
as many as you need.

In a form system without client-side code, a repeating field requires
a complicated round-trip with the server. The server needs to have a
sophisticated system for decoding nested data structures from the flat
HTML form-data that’s been submitted by the client, and also a system
for generating nested forms.

How Obviel deals with forms

Obviel does several things differently:

		the form description is in JSON

		the form contents is maintained as a JSON object by the client

		the form content JSON is submitted to the server using an AJAX
request.

Let’s look at an example first.

Here is an Obviel form:

{
 ifaces: ['viewform'],
 form: {
 widgets: [
 ifaces: ['textline_field'],
 name: 'test',
 title: 'Test',
 validate: {
 required: true
 }
],
 controls: [
 {
 'label': 'Submit',
 'action': 'http://example.com/submit'
 }
]
 },
 data: {
 'test': 'Some value'
 }
}

If this JSON is assigned to an object form in JavaScript, this is how
we would render this form in an element somewhere on the page:

el.render(form);

The form would have one field, test, with the value Some value
filled in (from the data object). The form would also have a
submit button labeled Submit.

When the user changes the form, the data object will be
automatically updated.

The test field is required. This means that a validation error
will appear inline if the user attempts to submit the form without
filling in this field, and submission will not proceed. Validation is
handled on the client side.

Conversion is also performed partially on the client-side: an
integer_field will convert to a JavaScript number for instance,
and a boolean_field to a JavaScript true or false value.

Further conversion and validation can be performed on the server-side.
Conversion is done to cast a value into one more convenient for the
server-side: a date string may be converted into a date object, for
instance. Validation after form submission on the server side is
entirely restricted to validation for security purposes and not used
for feedback purposes: is the JSON structure received actually
legitimate considering the constraints of the form? In that case there
is either an attempted security breach or an error, and server side
form handling should not proceed. Since these situations should not
occur in normal usage, there is no mechanism for server-side
validation error reporting. (A mechanism for server-assisted
client-side inline validation is however provided: a form may have a
global validation URL that will validate the data object and
return validation errors for it in a JSON structure. This information
is then used by the client to supplement the inline validation
procedure)

When the user presses the submit button on the form, the data
object will be submitted as JSON to the control’s action URL, in
this case http://example.com/submit.

Nested and repeating structures come naturally to Obviel forms: a
nested field’s data is simply a sub-object of data, and a
repeating field’s data is an array of sub-objects.

 © Copyright 2011, Obviel Developers.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 		latest

 		0.-0

 		1.0b2

 		1.0b

 		0.11.2

 		0.11

 		0.10

 		0.9.1

 		0.9

_static/test/images/ui-bg_gloss-wave_35_f6a828_500x100.png

_static/dependencies/datatables/images/sort_asc_disabled.png

_static/dependencies/datatables/images/forward_enabled.jpg

development.html

 Navigation

 		
 index

 		Obviel 0.10 documentation »

Developing Obviel

Here is some information on how we develop Obviel and how you could
participate.

Please talk to us our on our mailing list about
your plans!

Sources

Obviel’s source code is maintained on bitbucket:
http://bitbucket.org/obviel/obviel

You can check it out using Mercurial [http://mercurial.selenic.com/] (hg); see the bitbucket [http://bitbucket.org]
documentation for more information as well.

Feel free to fork Obviel on bitbucket if you want to hack on it, and
send us a pull request when you want us to merge your improvements.

Running the tests

The Obviel tests run in a web browser.

Accessing the tests

You can access Obviel’s tests by constructing a file: URL
to the test page. For instance:

file:///home/faassen/projects/obviel/src/test/index.html

You can also access Obviel’s tests through a web server. This is
useful as some web browsers have test failures due to the peculiar way
file: URLs are accessed. In addition, the JSCoverage tool
described below recommends against the use of file: URLs. A simple
way to start a web server is to type this in the project directory:

$ python -m SimpleHTTPServer

where python is a Python 2.x interpreter. You can then navigate
to:

http://localhost:8000/src/test

for the test page.

Executing the tests

From the test page, you will see various links to the individual test
suites:

		obviel.js tests - tests for the Obviel core

		obviel-forms.js tests - tests for Obviel forms

		JSHint - run JSHint against Obviel

There is also a section with manual (non-automatic) tests; this is
more for experimentation during development with the form logic in
particular.

Modifying the tests

The tests are maintained in the test directory under the src
directory. They use qunit [http://docs.jquery.com/Qunit] test engine.

Test coverage

The JSCoverage [http://siliconforks.com/jscoverage/] tool can be used to analyze the test coverage: how
much of the Obviel code is being actually called from the test
suite. To use it, first create a special coverage-analysis copy of the
Obviel project directory. If your Obviel project directory is called
obviel, change to the parent directory above it and type this:

$ jscoverage obviel obviel-cov

Then go to obviel-cov and start a web server:

$ python -m SimpleHTTPServer

Now go to the special coverage analysis page:

http://localhost:8000/jscoverage.html

In the URL input on the coverage page, type the following and press
Open in frame:

http://localhost:8000/src/test

Then click on the automatic test suite you want to run.

You can then click on the ‘Summary’ tab and see how much coverage the
test suite has for the file src/obviel.js.

Building the documentation

Obviel’s documentation is written using restructured text and Sphinx [http://sphinx.pocoo.org/].

To build the documentation of Obviel you need Python 2.6 or Python
2.7. First you need to install buildout, a tool that installs some
useful scripts for us. In the Obviel project directory, type the
following:

$ python bootstrap.py -d
$ bin/buildout

After you’ve done this once, you can build the documentation using
Sphinx:

$ bin/sphinxbuilder

The docs source is in doc, the built documentation will be
available in doc/_build/html.

Note that the src directory in its entirety is also copied into
the documentation tree under _static. This is done to make it easy to
publish demo code as part of the website.

Obviel test server

We’ve included obvielts, which is a simple Python-based web server
that is used to test integration with dynamic server code.

To build obvielts, you need to do a buildout (if you’ve installed the
documentation you already will have it):

$ python bootstrap.py -d
$ bin/buildout

You can now start the obvielts server using paster [http://pythonpaste.org/script/#paster-serve]:

$ bin/paster serve parts/etc/debug.ini

It will be available here:

http://localhost:8080

The code is in py/obvielts. It makes use of Obviel’s Fanstatic
integration, which is in py/js.obviel.

 © Copyright 2011, Obviel Developers.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 		latest

 		0.-0

 		1.0b2

 		1.0b

 		0.11.2

 		0.11

 		0.10

 		0.9.1

 		0.9

_static/test/images/ui-bg_diagonals-thick_20_666666_40x40.png

_static/down-pressed.png

_static/dependencies/smoothness/images/ui-bg_flat_0_aaaaaa_40x100.png

_static/dependencies/datatables/images/sort_both.png

_static/test/images/ui-bg_glass_100_f6f6f6_1x400.png

_static/comment-bright.png

_static/test/images/ui-bg_flat_10_000000_40x100.png

_static/test/images/ui-bg_glass_65_ffffff_1x400.png

_static/dependencies/smoothness/images/ui-icons_888888_256x240.png
AT A vEar 3o

AN avadrse
I T
TraNlsenTrONT L.
wrefesasovea
rHCEO R e
EEDOAO®MP2LB8TBBLI
ANDE S OBBALLIBYRS
O+ d-=xXFOKOBBEBT
AO:?vecowx

S R

vrucoE®

00000000000000
soeoam

W =44

_static/dependencies/smoothness/images/ui-icons_222222_256x240.png
AT A vECr SO

AN avadrse
I T
TraNlsenTrONT L.
wrefesasovea
rHCEO R e
EEDOAO®MP2B8FTBBLI
ANDE S OBBALLIBYRS
O+ d-=xXPOKOBBEBT
AO:?veocowx

S R

vrucoE®

©00000000000000
soeoam

I =44

_static/dependencies/smoothness/images/ui-bg_glass_55_fbf9ee_1x400.png

_static/manualtest/composite.html

_static/test/images/ui-bg_highlight-soft_75_ffe45c_1x100.png

_static/up.png

_static/test/test-obviel-forms.html

 tests for obviel-forms.js

_static/test/images/ui-icons_ef8c08_256x240.png
AT A vEar O

AN avadrse

has L eRtaen Tad
L R A
wrefesasovea
rHCEO R e
(TR ERT RS FEY
ANDE S OBBRLLIBYRS
O+ dk-=xXPOKOBBEBT
AO:?vecowK

S I

vrucoE®

00000000000000

soeoam
W =44

_static/tes